Entropy Conservative Schemes and Adaptive Mesh Selection for Hyperbolic Conservation Laws
نویسندگان
چکیده
We consider numerical schemes which combine non-uniform, adaptively redefined spatial meshes with entropy conservative schemes for the evolution step for shock computations. We observe that the resulting adaptive schemes yield approximations free of oscillations in contrast to known fully discrete entropy conservative schemes on uniform meshes. We conclude that entropy conservative schemes are transformed to entropy diminishing schemes when combined with the proposed geometrically driven mesh adaptivity.
منابع مشابه
The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws
Discrete approximations to hyperbolic systems of conservation laws are studied. We quantify the amount of numerical viscosity present in such schemes, and relate it to their entropy stability by means of comparison. To this end, conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they can be interpre...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملPerfect Derivatives, Conservative Differences and Entropy Stable Computation of Hyperbolic Conservation Laws
Entropy stability plays an important role in the dynamics of nonlinear systems of hyperbolic conservation laws and related convection-diffusion equations. Here we are concerned with the corresponding question of numerical entropy stability — we review a general framework for designing entropy stable approximations of such systems. The framework, developed in [28, 29] and in an ongoing series of...
متن کاملHigh-Order Schemes, Entropy Inequalities, and Nonclassical Shocks
We are concerned with the approximation of undercompressive, regularizationsensitive, nonclassical solutions of hyperbolic systems of conservation laws by high-order accurate, conservative, and semidiscrete finite difference schemes. Nonclassical shock waves can be generated by diffusive and dispersive terms kept in balance. Particular attention is given here to a class of systems of conservati...
متن کاملTwo A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws
In this paper, we propose a posteriori local error estimates for numerical schemes in the context of one-dimensional scalar conservation laws. We first consider the schemes for which a consistent in-cell entropy inequality can be derived. Then we extend this result to second-order schemes written in viscous form satisfying weak entropy inequalities. As an illustration, we show several numerical...
متن کامل